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ABSTRACT OF THE DISSERTATION

Spatial and Temporal Scales of Precipitating Tropical Cloud Systems

By

Eric Martin Wilcox

Doctor of Philosophy in Oceanography

University of California, San Diego, 2002

Professor V. Ramanathan, Chair

Precipitation, radiative forcing, and aerosol scavenging in tropical cloud systems 

over the wintertime Indian Ocean are examined in satellite observations and global atmo-

spheric simulations.  Measurements of surface rain rate and top-of-atmosphere radiative 

fluxes from the TRMM satellite, as well as brightness temperature measurements from the 

METEOSAT-5 satellite, are used to identify the boundaries of cloud systems, track their 

evolution, and determine the spatial and temporal scales of cloud thermodynamic forcing.  

The resulting quantitative, statistical description of monsoonal cloud systems is compared 

with simulated cloud systems in the NCAR CCM3 model.

Monsoonal clouds span a spectrum of spatial scales from smaller than 25 km2 to 

greater than 107 km2.  Atmospheric heating owing to precipitation and the cloud greenhouse 

effect, as well as surface cooling owing to cloud albedo, increases with the spatial scale 

of cloud systems.  As a result, thermodynamic forcing of the monsoonal environment is 

dominated by the contribution from giant semi-permanent decks of overcast cloud that 
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persist for days to weeks.  Embedded within such cloud decks are numerous rain cells 

reaching up to 1 million square-kilometers because deep convection organizes into clusters of 

narrow overturning cells attached to a broad stratiform region of precipitation.  A relatively 

few such mesoscale convective systems are greater than 105 km2, yet are responsible for up to 

70% of monsoonal precipitation.  In contrast, simulated cloud systems in the model gently 

precipitate throughout their duration and everywhere within their boundaries.  The model 

lacks a process that acts to organize convection into mesoscale episodic structures.

Precipitation is the principal means by which particulate pollution is removed from 

the atmosphere.  The effect of model biases in the distribution of precipitation is tested by 

integrating satellite precipitation measurements into the MATCH chemical transport model.  

Mesoscale convective systems in the equatorial Indian Ocean are a substantial barrier to the 

transport of aerosols from South Asia to the Southern Hemisphere.  Using observations of 

the spatial coverage of precipitation in the model reduces the amount of South Asian aerosol 

transported to the remote Northern Hemisphere by more than a factor of 2 compared to a 

simulation using model derived precipitation.


